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Recent progress in the large scale mapping of social networks is opening new quantitative
windows into the structure of human societies. These networks are largely the result of how we
access and utilize information. Here I show that a universal decision mechanism, where we
base our choices on the actions of others, can explain much of their structure. Such collective
social arrangements emerge from successful strategies to handle information flow at the
individual level. They include the formation of closely-knit communities and the emergence of
well-connected individuals. The latter can command the following of others while only exercising
ordinary judgement.

In recent years there has been growing interest in the quantitative structure of human
societies. It has emerged that we are part of heterogeneous networks or graphs (1-4),
sets of links that connect each one of us to all our acquaintances. Not all people are
alike: some live almost isolated, most belong to distinguishable communities (1,5) and a
small fraction of the population is made up of exceptionally well connected individuals
(6). Social networks have the remarkable property that one can reach anyone else
through a very small number of connections – the famous six degrees of separation
(7,8). Watts and Strogatz (1) coined the term small world networks, to describe the class
of graphs with these properties that describe human societies.

These findings beg important questions: Why are social networks invariably
clustered in communities?  Why are there individuals with such different connectivity?
Answering these puzzles requires tying the morphology of social networks to their
function (2,9,10).  Similar problems occur in the study of other complex networks, for
example, dealing with gene and protein-protein interactions (11-13), metabolism
(14,15), ecosystems (16,17) (foodwebs) and neural activity. Thus understanding the
simultaneous robustness and adaptability of these complex systems in the light of their
function is a general problem at the forefront of the current scientific agenda across
many disciplines (9).

The difficulty of this approach consists in defining the function of each of these
complex networks in a way that captures their essence and simultaneously permits
quantitative progress. Clearly many details of social behaviour, in particular, appear too
rich and our understanding of them remains too qualitative to fall in this class. There are
however important well documented exceptions.

A familiar situation is having to choose between seemingly equivalent options, at
least given the amount of information and time at our disposal (18). In practice many of
our decisions fall in this class. This leads to a degeneracy of choice, typical also of
situations when relevant information is difficult to discriminate from too much noise, or
when it cannot be trusted. In these situations we often rely on the observation of the
actions of others we know as the basis for our decisions (19-23). This strategy has two
important advantages: we can be sure not to do worse than most of the people we know
and, in addition, we may actually join a winning trend early and profit from it.

Recently this type of discriminating imitation has become the focus of an extensive
empirical literature in economy (19) and the social sciences. Bikhchandani, Hirshleifer
and Welch (20,21) collected a vast amount of empirical evidence that establishes the



universal importance of the choices of others in influencing our own and were able to
model this phenomenon in very simple terms. They dubbed the formation of the trend or
fad that often results an information cascade; a process whereby sequential individual
choices propagate a piece of information through the entire population (22).  This
phenomenon is also often liked (qualitatively) to the spread of an epidemic (10,22).
Interestingly, information cascades lead to the spontaneous formation of large
consensus where there are a priori no individual preferences.

Here I use an implementation of these ideas (23) consisting of a population of N
agents, facing a choice among L labels. At each time step individuals compare the
relative growth rate of their label to that of one of their immediate acquaintances’,
chosen at random. If the latter’s growth rate (the trend’s relative momentum) is greater
the agent switches to his neighbor’s trend; otherwise he keeps his. The model has one
additional ingredient: if a trend slows down individuals may decide to take a risk in
something new (an empty label). This effect is modeled by pcrit, the relative growth rate
below which non-conformism sets in. Here pcrit=10-5, which results in population wide
trends or cascades (23). References to other related dynamical implementations (22)
(including  models of herding) and additional discussion are given elsewhere (23).

Typical dynamics (23) are characterized by cycles alternating population disorder,
when many different trends coexist, and order, when most of the population falls into
the same label. Both collective states of order and disorder are dynamically unstable
making the evolution very sensitive to chance events (20,21,23). As a result it becomes
very difficult in practice for an external observer to profit from the reckoning that agents
are following trends, especially when the number of choices becomes large.

To explore the effects of the underlying geometry on the dynamics I generate
(binary) artificial social networks as small world graphs (1,24). These are random
graphs with clustering: N individuals are represented as nodes, each with an average
number of connections z. Clustering is produced by dividing the population into
communities, each characterized by an average higher degree of internal connections
per node zin  than external zout connections (z=zin+zout).

In addition to measure correlations between parts of the population it is useful to
define a label state vector
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is a (positive definite) measure of the correlation between different groups, see Fig. 1.



Fig. 1 The correlation between two halves of the same community (green), halves of
distinct communities (blue) and a set of individuals with random connections (red) for
N=256, L=1000, z=8, divided in 4 communities (see text). The correlation inside a
community is always close to 1. The correlation and synchronization of choices
between distinct communities is low for small zout, becoming higher as the number of
connections between them increases.  Individuals with random connections display
intermediate correlation. For high zout the original communities merge together. Error
bars denote standard deviations over a set of 20 network realizations and many
cascade cycles. Fig. 2 The success rate of several criteria for predicting the next
winning trend at the time when the dominant movement decays. The next winning
trend is not easily determined as the largest secondary trend (blue), the fastest
(orange) or even the one with the largest product of size and momentum (green). The
best predictor is the choice of the hub (red), particularly as the number of choices L
becomes large. The upper panel refers to lower hub visibility (his input is considered on
average by each individual with probability phub=1/8, each time), the lower panel to
higher visibility (phub=1/2).  Error bars are as in Fig. 1.

Fig. 1 shows the correlation between several subsets of the population, within a
community, between two distinct communities and for a control set of individuals with
random connections. It is now clear why it is a good defensive strategy to belong to a
tightly knit collective: communities are islands of information coherence. Thanks to the
large redundancy of personal connections inside the community the coherence of local
information is preserved and personal deviations inside the group are small compared to
those to the outside. This remains true even if a few individuals or connections are lost.

Comforting as it may be to keep up with our neighbours it may actually be better to
be a step ahead. As we discussed above this is a tall order, even if one is fully informed
of the state of the whole population. Figure 2 shows the success rate of several criteria
to predict the emerging new trend at the particularly important time when a former
dominant movement collapses. All criteria based on the full knowledge of the state of
population at this particular time (the largest secondary trend, the fastest growing trend
or the trend with the largest product of momentum and size) are far from good and
become very poor for large number of competing choices L.

Interestingly there is a simple alternative solution – it relies on connections, not
reasoning or information. I examine this scenario by introducing a new well-connected



individual into the population, a network hub, as in Fig 3. The hub bases his decisions,
like any other agent, on the state of an average number of other individuals z, but his
choices can be seen by everybody else. What is particular about the evolution is
illustrated in Fig. 2 and 4: the hub is exceptionally good at picking the next winning
trend early, before it becomes dominant – the perfect winning strategy.

  

Fig. 3 An example of a (binary) social network with N=128, z=4, divided into 4
communities (red, blue, green, orange) and with a hub (central node). Here the state of
the hub is seen by all individuals with probability phub=0.25 each time, but has input
from z=4 individuals. As such the actions of the hub are very visible but not better
informed.  Fig. 4 Evolution of the dominant trend (solid) and the hub’s trend (red) for
L=10. The hub invariably picks the next dominant trend correctly and early, qualities
that reinforce his social position.

However the hub is, by construction, neither better informed nor animated by
superior decision making.  This apparent paradox is easily dispelled: the hub’s actions
are very visible to others. Any reasonable decision on his part (the adoption of any
growing label) has a large probability of being followed by many (~Nphub) and thus to
make the winning trend. This property is independent of the underlying community
structure and is enhanced for larger populations (larger N), as long as phub(N) such that
d(Nphub)/dN>0. Thus, it is popularity, not knowledge or reasoning, that leads to the most
successful strategy in an environment where many courses of action are equally viable.

Given some memory the hub’s successes reinforce his position and (apparent)
foresight. Each correct ‘prediction’ encourages others to heed his choices and follow.
This reinforces the hub's popularity, allowing him to pick the next winning trend with
greater certainty and so on: the process is self-reinforcing. It also naturally leads to a
specific form of preferential attachment (25), where the most connected node – the best
trend predictor – is preferred. Thus, under choice degeneracy, one should expect the
appearance of well-connected, very visible individuals as a social network evolves.

Nodes with an exceptionally large connectivity are a common property of other
complex networks, including scale-free graphs (26) describing e.g. WWW, power-grids
and the large scale features of protein-protein interactions in vivo. It has been pointed
(27,28) out that such networks’ utmost fragility is due to the loss of these key nodes.
Trend dynamics shows how this fragility may only be apparent in social networks. The



hub is a common node, only its degree of outgoing connections is exceptionally large.
I argued above that there is a fundamental instability for a common individual to be
promoted to this position. Because social connections are rearranged on much faster
time scales than nodes (29), upon loss of a hub a new one can quickly develop from
another node and the structural integrity of the network will be preserved after a short
transient. Moreover the addition of a second well-connected node dealing with the same
information reduces the predictability of emerging trends unless the two hubs work in
tandem (as would happen under specific assortative mixing (29)) and so forth. It is
however perfectly natural for separate hubs to coexist if they relate to different social
dimensions (30), i.e. if they deal with different types of information. In this way the
large scale structure of human societies, when averaged over time and social dimensions
may be characterized by many hubs with varying reaches and interdependencies. These
properties may lead to the emergence of interesting scale-invariances in large social
networks associated with decision making and information flow.

Observing the actions of others is a universal simple mechanism that allows us to
handle imperfect information in our complex social environment to make difficult
decisions. We can protect ourselves from the tyranny of fashions by associating into
tightly knit communities or we may try to set trends by influencing the choices of others
through our social connections. Here I showed that these successful individual strategies
lead to stable social arrangements, which coincide with some of the most notable
observed structures of social networks. Trend dynamics breaks the degeneracy of our
individual choices and leads to the spontaneous formation of collective movements.
Whenever concerted social action is more productive than the sum of individual efforts
social hubs may become the social mechanism that facilitates the creation of consensus
most promptly and predictably.
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